180 research outputs found

    Human diseases of telomerase dysfunction: insights into tissue aging

    Get PDF
    There are at least three human diseases that are associated with germ-line mutations of the genes encoding the two essential components of telomerase, TERT and TERC. Heterozygous mutations of these genes have been described for patients with dyskeratosis congenita, bone marrow failure and idiopathic pulmonary fibrosis. In this review, we will detail the clinical similarities and difference of these diseases and review the molecular phenotypes observed. The spectrum of mutations in TERT and TERC varies for these diseases and may in part explain the clinical differences observed. Environmental insults and genetic modifiers that accelerate telomere shortening and increase cell turnover may exaggerate the effects of telomerase haploinsufficiency, contributing to the variability of age of onset as well as tissue-specific organ pathology. A central still unanswered question is whether telomerase dysfunction and short telomeres are a much more prominent factor than previously suspected in other adult-onset, age-related diseases. Understanding the biological effects of these mutations may ultimately lead to novel treatments for these patients

    Facioscapulohumeral muscular dystrophy: Are telomeres the end of the story

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy with a relatively late age of onset (usually in the late teens) compared with Duchenne and many other muscular dystrophies. The current FSHD disease model postulates that contraction of the D4Z4 array at chromosome 4q35 leads to a more open chromatin conformation in that region and allows transcription of the DUX4 gene. DUX4 mRNA is stable only when transcribed from certain haplotypes that contain a polyadenylation signal. DUX4 protein is hypothesized to cause FSHD by mediating cytotoxicity and impairing skeletal muscle differentiation. We recently showed in a cell culture model that DUX4 expression is regulated by telomere length, suggesting that telomere shortening during aging may be partially responsible for the delayed onset and progressive nature of FSHD. We here put our data in the context of other recent findings arguing that progressive telomere shortening may play a critical role in FSHD but is not the whole story and that the current disease model needs additional refinement

    Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening

    Get PDF
    Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father's age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications

    C1QBP Inhibits DUX4-Dependent Gene Activation and Can Be Targeted with 4MU

    Get PDF
    FSHD is linked to the misexpression of the DUX4 gene contained within the D4Z4 repeat array on chromosome 4. The gene encodes the DUX4 protein, a cytotoxic transcription factor that presumably causes the symptoms of the disease. However, individuals have been identified who express DUX4 in their muscle biopsies, but who remain asymptomatic, suggesting that there are other factors that modify FSHD penetrance or severity. We hypothesized that an FSHD-modifying factor would physically interact with DUX4, and we took a proteomic approach to identify DUX4-interacting proteins. We identified the multifunctional C1QBP protein as one such factor. C1QBP is known to regulate several processes that DUX4 affects, including gene expression, oxidative stress, apoptosis, and pre-mRNA splicing. We used siC1QBP knockdown assays to determine if C1QBP affects DUX4 activity. While C1QBP had little effect on DUX4 activity in myotubes, we found that it inhibits the kinetics of DUX4-target gene activation during myogenic differentiation. This identifies C1QBP as a regulator of DUX4 activity and a potential target for FSHD therapeutics. Importantly, C1QBP is regulated by binding to the signaling molecule hyaluronic acid (HA). Decreasing HA by treating cells with 4-methylumbelliferone (4MU), an inhibitor of HA synthesis, resulted in a sharp decline in DUX4 activity and also greatly reduced its cytotoxicity. We have found that DUX4-induced cytotoxicity is associated with severe mislocalizaton of C1QBP, which is prevented by 4MU. This defect is not a downstream result of DUX4-induced oxidative stress, as it could not be prevented by treating cells with an antioxidant, nor could it be recapitulated by exposing cells to oxidants. This identifies C1QBP as a target for the treatment of FSHD, and in particular indicates that 4MU, already an approved drug in Europe and currently under investigation for other indications, may be an effective C1QBP-targeting FSHD therapeutic compound

    The Roles of Telomerase in the Generation of Polyploidy during Neoplastic Cell Growth

    Get PDF
    AbstractPolyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in āˆ¼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite), as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres), telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC), exert both reverse transcriptase-related (canonical) and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions
    • ā€¦
    corecore